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Comparison of Quasi-Static and Exact
Electromagnetic Fields from a
Horizontal Electric Dipole
Above a Lossy Dielectric
Backed by an Imperfect
Ground Plane

JUAN R. MOSIG AND TAPAN K. SARKAR, SENIOR MEMBER, IEEE

Abstract —In most microstirp transmission lines, analysis is made assum-
ing that a quasi-TEM mode exists and propagates down the line. The
primary objective of this paper is to obtain the region of validity of this
assumption. The second objective of this paper is to derive the expressions
for the fields for a horizontal electric dipole over a lossy dielectric medium
backed by an imperfect ground plane. It is shown that, to a first approxima-
tion, fields at the air-dielectric interface are independent of the ground
plane conductivity. Since we are interested in coupling between lines, our
interest is in the computation of the fields primarily at the air-dielectric
interface. Finally, numerical results are presented to show where the
quasi-static approximations deviate from the exact solution for a given
microstrip geometry as the frequency of operation or the observation point
is changed.

I. INTRODUCTION -

ICROSTRIP structures are now widely used in
computer systems for propagating electrical energy
from a source to a load. While almost all microstrip
structures have been analyzed by assuming a quasi-TEM
model, it is not known a priori under what conditions the
quasi-TEM model breaks down. Rigorous microstrip for-
mulation for the dynamical case can be established by
using well-known stratified media theory. The pioneering
study on electromagnetic wave propagation in stratified
media must be ascribed to Sommerfeld, who investigated
the radio wave propagation above a lossy ground as early
as 1909. Later several authors [1}-[3] have extended these
theories to arbitrary stratified media, and quite recently
this' model has been applied to practical microstrip struc-
tures [4]-{8].
Even though the Sommerfeld theory yields an exact
solution, the analysis is quite complicated, even for the
simple case of a horizontal electric dipole over a stratified
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medium [9]-[10}. That is why a quasi-TEM approximation
is often made of the fields that are produced by the dipole.

It is quite apparent that for a given microstrip configura-
tion, if the frequency is low enough, a quasi-TEM analysis
would yield a good solution. However, as the frequency of
operation increases or as one moves away from the source,
the quasi-TEM analysis would tend to differ from the exact
analysis. The objective of this paper is to describe the
region of validity of the quasi-TEM analysis for a given
microstrip configuration. It is important to know the fields
at the air—dielectric interface as these fields are primarily
responsible for the cross-talk coupling between different
microstrip lines. Also, at this interface surface waves are
generated. The quasi-TEM analysis neglects the presence
of the surface waves. However, if the frequency is high
enough or the point of observation is away from the
source, it is the surface waves where most of the traveling
energy is confined to rather than in the quasi-TEM fields.

This paper reviews the theoretical foundation of a micro-
strip dynamical model and computes the fields at the
interface. Particular attention is paid to the development of
efficient numerical techniques. In Section II, the mathe-
matical foundation is reviewed. The expressions for the
electric field are presented in Section II1. In Section IV, the
effect of a finitely conducting ground plane on the field
components is taken into account. In Section V, the quasi-
static approximations are presented. The computational
and numerical details for the evaluation of the fields are
described in Section VI. Finally, numerical results are
presented in Section VII to outline the regions of validity
of the quasi-static approximation.

II. HorizoNTAL ELECTRICAL DIPOLE
ON MICROSTRIP

Consider a x-directed horizontal electric dipole (HED)
of moment Idx located in the air—dielectric interface of a
microstrip structure with infinite transverse directions as
shown in Fig. 1. The substrate is a homogeneous isotropic

0018-9480 /86 /0400-0379301.00 ©1986 IEEE
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Fig. 1. Geometry of the problem.

lossy dielectric of thickness # and complex permittivity
(1)

where tan@ is the loss tangent and €, is the complex
relative dielectric constant of the medium.

The origin of the coordinate system is chosen to be the
location of the HED. The ground plane is located at
z=—h and is considered to be a perfectly conducting
plane. Later on, this restriction will be removed and the
effect of a finite ground plane conductivity will be taken
into account.

Following Harrington [10], the electromagnetic fields in
such a structure can be derived from a scalar and a vector
potential as

€=, = ¢, (1— jtand)

E=— jud—VV 2)

1
=—V X A4.
Ho

Several other approaches to determine the fields, such as
decomposition into their TM and TE parts, are also cur-
rently used [3]-[4]. But the use of potentials is preferred
here, because it allows a simple derivation of quasi-static
approximations and leads to the well-behaved mixed-
potential integral équation.

Both the vector and scalar potentials are solutions of
Helmoltz-type equations whose general solution in cylin-
drical coordinates is, assuming a time dependence of the
form exp(jwt)

(3)

S eyp) 4,07 e8] (B0 + B
C
(4)

where k, and k_ are the complex radial and vertical
component of the wave number
kz=<.oz,u.€=kz+kz2 (5)
and p, ¢, and z are the descriptions of the cylindrical
coordinates. C is an infinite path going from the third to

the first quadrant in the complex plane k,=A+ j» as
shown in Fig. 2 [11].
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Fig. 2. The complex 8,=A+ j» plane with pertinent branch cuts.
C = integration path; P = locus of the first pole A, + ;», as a function
of dielectric losses.

The boundary conditions for tangential fields in micro-
strip structure are

e, X(E,—E,)=0
e.X(H,— H,) =,

(6)
(7)

(8)
)
where indexes 1 and 2 refer to air and dielectric substrate,
respectively. Conditions (6)—(8) suffice to obtain the poten-
tials. Equation (9) can be used to determine the currents in
the ground plane.

The surface current associated with an HED is given by
the Dirac’s Delta distribution

3(p)
“ 2mp

} at interface z =0

e. XE,=0

e. X H,= JS} at the ground plane z = ~ A

J=e

s

Idx

Tdx @
=ex;fCH0 (k,p)k,dk,, z=0 (10)

where the Hankel transform for 8(p)/p has been utilized
in (10).

It is well known [3]-[7] that two components for the
magnetic vector potential A, and A4, are needed to satisfy
the boundary conditions (6)—(8). For both the potentials,
the boundary conditions transform to

VvV, =V,
1 2 (11)
A4,=4,
IA, 04, o onz=0 (g)
(92 - aZ = p'OJx ( )
and
V,=0
A,.=0 (14)
oA, , onz=-—h (15)
2=, (16)
0z
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Introducing the above conditions (11)-(16) and utilizing
the general expression (4), we obtain for the potentials

" a exp(—uyz)
{A }z—ldxfCHéz’(kpp)D—il sinhu(z + h) ) dk,

X2 4
. sinh uh

(17)

Azl Ko
{A22} =— Eldx(e,—l)cow

oy [ (=)
-le(z)(kpp) *—{ coshu(z+h) }dk, (18)
C DyDg\ — —~ -~
cosh uh
and
|8 cos ¢
= Idx
v, d7jwe,
2N CXp(“‘llOZ)
[HP(k,p)=5={ sinhu(z+h) pdk, (19)
HDE - . 4 5
sinh uh
where
Jkio =k — kg (20)
u= jk,= kg—c,ké (21)
k= w’neeo (22)

and the functions D;,, D, and N are given by

Dy = ugy+ ucothuh (23)
(24)
(25)
In particular, Dy and D are closely linked to the Fresnel

reflection coefficients R, and R of a TE(H) or TM(E)
wave [3], respectively, by the relations

Dp=¢€,uy+ utanh uh
N=ugy+utanhuh.

R,= 2o -1 26
H™ ] (26)
R,= 2k 1 27

E D . (27)

Thus, the zeros of Dy and D give the phase constant of
the characteristic TE and TM surface wave modes propa-
gating in such a structure [4]-[7]. For a lossless substrate,
the zeros are situated on the segment {[k,], [\/2: kyl} of the
real axis A =Re [k,], as shown in Fig. 2. For the lossy
case, the zeros move away from the real axis, thereby
having a small negative imaginary part.

As could be expected, the 4, component vanishes when
¢, =1. The sources of the scalar potential V" are the charges
associated with the HED via the continuity equation,
namely, two point changes of value g = + I/jw separated
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by an infinitesimal distance dx. The scalar potential ¥, of a
unit point change is related to the scalar potential of a
HED via the relationship

Idx 8V

jw Cox (28)

III.

The electromagnetic field is now derived from the poten-
tials by using (2) and (3). For the sake of completeness,
here are the complete expressions for the six cartesian
components of the fields at the air—dielectric interface

EXPRESSIONS FOR THE FIELDS

k
Amjwe E, = Idx [knggD(kpp)D—" dk,
C H

cos2¢ kIN
2 P
; [C H®(k,p) Do, o

kN
- 2 @ d
cos qbeHO (k,p) D, D, dk, (29)
kN
4mjwe,E, —Idxsm2¢[ fH(Z’ p)——dk,
‘ DyDy
N
— (2) 30
1/2 / ) 5op ke (30)
dmjwe E, = Idxcosqbe(Z) »P)
kZutanh uh
Eputaniun dk (31)

dnH, = Idx(e, —1)sin2¢

[ j HO(k,p dk,

E H

k3
=172 [ HO (kpp) 35

E~YH

dkp} (32)
= @ Kolto dk
47,Hy_._1dxfCH0 (kpp)— —dky

+ Idx(e,—1) l:coszqsfHéz)(kpp)
c

k? cos2¢
DgDy * p
2
f HO(k DEDH dk } (33)
k2
4nH, = Idxsind / HP(k p)D—;dkp. (34)

As expected, the H, component vanishes for the case
¢,=1. Also, the E, component is discontinuous at z =0,
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since permittivity changes. The above expression corre-
sponds to the value of the field in the air at z=0+.

IV. EFFECT OF A FINITE CONDUCTIVITY
GROUND PLANE

A finite conductivity ground plane can be modelled as
an impedance wall where

Etan = Zst = Zs(e: X Htan)
with Z_ being the surface impedance
+J

S 7

(35)

8 = skin depth, o = conductivity.

(36)

The exact solution of the microstrip problem with the
condition (35) replacing (8) is quite involved [1], [3]. For
small ohmic losses a perturbation technique similar to the
one used to calculate attenuation factors in waveguides can
be used. Thus the magnetic field in (35) is approximated by
its value in the infinite conductivity case (32)—(34).

The new set of boundary conditions for the potentials
are identical at the interface, but in the ground plane, we
have

V,=0 (37)
ZS
Ax2=;a—)Hy2(0=00) (38)
aAzl Zs aHvZ
5. " je ax (0= (39)

The potentials are now obtained from (11)-(13) and
(371—(39).

To illustrate the effect of a finite conductivity in a
situation of practical interest, let us consider the tangential
electric field at the interface.

The relevant potentials are 4, and V, since

oV av
Ex=—ijx——3— and EV:_(?—'
y
We obtain
=—1dx/H<2>
k JRuexp(— uh)
- | dk, (40
DH[ k, sinh uh p (40)
Idxcoso
= | HO(L
4rjwe, fc ! ( pp)
N+ jkole,—1)Rexp (— uh
Nl DRow(—u)
Dy D, coshuh P

where R is the ratio between the surface impedance and
the free space impedance
Z 7fe
R=—"=(1+j) feo
ZO

(42)

and f is the frequency of operation. By comparing with the
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expressions for the potentials in the perfect ground plane
case, we observe that the difference is in the one additional
term in the numerator for the potentials. This term is
proportional to the ratio R between surface impedance and
free-space impedance. In addition, for the scalar potential
the term is proportional to the difference (e, —1).

However, the poles of the integrands in the potential
expressions are still given by the zeros of Dy and Dy.
Hence the surface waves are independent of the ground
plane conductivity for this approximation.

V. QUASI-STATIC APPROXIMATIONS

In this section expressions are obtained for the fields for
the quasi-static case when k, — 0. Quasi-static approxima-
tions are obtained by noting that the term u can be written
as

u?=ud—(e,— 1)k} (43)

Thus, the obvious simplification is to make u = u, in the
Sommerfeld integrals. With this substitution, analytical
evaluation is possible by series expansion and term by term
integration. Introducing the variable and the parameters

t=exp(—2uyh) (44)

e, +1
=" (45)

€,—1
= €, +1 (46)

it is seen that
1 1-¢
D, 2u, (47)
N 2
Dy (e 41)(+m)

— (1=t + 922+ )

m

(48)

and hence we obtain for the integrals appearing in the
electric field the expressions

*fH(‘)z)(k p)ﬁ _ exp (— jkoro) B exp (— jkor)
C D P ¥y n
(49)
k2N
H® p
*fc 1 (kpp)DHDE dk,
p | 1+ jkor .
= *{’—_CXP(—Jkoro)_(l‘*'n)
€M 0
© ;1 Y Jkr, '
Y (-m) exp (— jkor,) (50)

=1 4
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where
r=yp*+(z+2ih)*, i=0,1,2,---  (51)
N
fH(Z) "p)D D, exp(—uyz) dk,
1 Pon 2P,
= —————'+_ -7
€r+1[ r05 ; exp( Jkoro)
X -1
—1+9) X (=)
i=1
0’0, 2P
. _——+ exp (— jkor,) (52)
rl rl
and

u k tanh uy A
Ugrplanhugn Lot B%0" ik,
DE

/ HO(k

o
= o [Z_r_gg CXP(_ jkoro)_(1+ "7)

e, +11 7
o0 1 (z+2in)Qi .
X () T e (k)| (59)
1=1 ]
with
P =1+ jk4r, (54)
Q,=3+3jkyr,— kir?. (55)

Similar expansions can be obtained for the integrals related
to the magnetic field (32)-(34). Of course when k,=0
(zero frequency) either the exact expressions or the quasi-
static approximations become the static case in which the
fields are created by an electrostatic dipole of moment
gdx = Idx /jw. This moment becomes infinite at zero
frequency. Hence, in order to avoid computing infinite
fields in the static limiting case, we shall consider that the
current in the HED is proportional to the frequency, or in
other words the electrostatic moment gdx remains finite at
zero frequency. This assumption corresponds closely to the
practical case of a dipole showing a capacitive input im-
pedance and excited by a voltage generator.

VI.

For the evalution of the fields, it is necessary to evaluate
certain infinite integrals of oscillatory functions and diver-
gent integrals as A — co. In addition, there exists poles near
the path of integration which makes numerical integration
along the real axis more complicated. For the sake of
simplicity, we shall consider that the working frequency
satisfies the condition [ <c¢y/ 4/1\/: —1. Thus, only one
pole, corresponding to the first zero of D, must be consid-
ered [11].

Numerical techniques developed for the lossless case [7]
do not work accurately for all parameters of interest,
particularly when there is a lossy dielectric substrate. Many
new techniques have been devised and checked extensively.

COMPUTATIONAL DETAILS
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This section gives an outline of the numerical techniques
which in our opinion are best adapted to this problem.

Even though many paths have been tried to evaluate
these integrals, we felt the integration along the real axis is
the most efficient. Fig. 3(a) shows a typical example of the
class of function to be integrated. An enlarged view in the
interval [0.9k,, 1.4k,] is depicted in Fig. 3(b). The main
difficulties regarding the numerical integration, are then
infinite derivatives at A = k, and the strong variations near
the complex pole, especially thie sharp peak in the imagin-
ary part. Moreover, the function oscillates and diverges at
infinity.

The integration interval is decomposed into three subin-
tervals [0, k), [ko,kmfe:] and [ko\/z:oo]. In the region
[0, ko] the infinite derivative in k, is eliminated with a
change of variables A =k, cost. The resulting smoother
function is integrated numerically. In the interval [k,,
‘/Z k), the singularity is first extracted (if the integrand
includes the denominator Dg). By writing the function
under the integral sign in the form F(A)=J,(A))f(P),
then we have

F(A) = [1,(A0) f(AN) = Fong(M)] + Fing () (56)

0.6

(a)

{11 .5
k

0.2

}

0.0 —+—t—t—

:—\'r“‘“ \\

-0'6 L

—
v

[ 1M1

(b)

Fig. 3. (a) The complex integrand for the scalar potential. ¢, =5, tand
=0.01, ko, =54, kgh=0.27. [RE] - real part of the mtegrand [IM]
—> imaginary part of the integrand. (b) Enlarged view of the integrand
for Fig. 3(a) in [0.9k,, 1.4k,1. [RE]— real part of the integrand.
[IM] — imaginary part of the 1ntegrand
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where
?

Fsmg(}‘)= }\__( (57)

A+ Vp)
Here A, + jv, is the complex pole and R’ the residue of F
at the pole

R'=J,[(N,+ j,)p]-  lim (k,—X,—j»,)f(k,).
k,—= A, + 7,
(58)
The function Fg,, is integrated analytically as
2
’ 2
 [kofe Ry +(k0\/Z—}\p)
Ismg - / P;:ngdA =—-In 2
ko 2 2+(ky+A,)
kgfe, — A
+ jR’arctan —L
VP
+ jR’arctan £ 0 (59)
v

I3

and », approaches zero from the negative side. It is worth
mentioning that when », - 0 with A, > &,

I, =R'1 — jmR’
sing n }\p _ k() Jm
ko, dA .
=R’ — juR’ 60
){( SR, T (60)

and hence the lossless case is a special case of this general
procedure.

Fig. 4 depicts the real part of the original function F(A)
(curve A) and of the difference F(A)— F, ,(A) (curve B,
where the singularity has been extracted). There is still an
infinite derivative in the curve B at A = k,. With a change
of variable A = k, cosh ¢ one finally obtains a very smooth
integrand (discontinuous line in Fig. 4), which is integrated
by a Gaussian quadrature. The same procedure is applied
to the imaginary part of F(A) to eliminate in a similar way
the sharp peak and the infinite derivative.

0.2 —

-0.6 —
Fig. 4. The integrand of Fig, 3 (real part only) in the interval

[k kpyfe, 1
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0.2

0.0

-0.2
Fig. 5.

The integrand of Fig. 3 (real part only) in the interval
[kay/e, 10K, .

Finally, in the region [\/Z k,, oo] we first extract the
static term defined by F(A, k,=0). Fig. 5 depicts the
integrand F(A, k) (curve A) and the difference F(A, k)
— F(A,0) (curve B). It can be shown that the static term
has the form

F(X, ko=0) =CJ,(Ap)X" (61)

and hence it can be integrated analytically.

The remaining part is a slowly convergent oscillating
function which is handled with a specially tailored numeri-
cal technique [7]. Extensive tests have been performed to
check the validity of the numerical results in the range
0.001 <kyp <100, 0.01 < koh <1.5,1 <€, <10 and for dif-
ferent ground plane conductivities and dielectric losses.
Typical results are presented in the next section.

VIL

To allow a quantitative comparison between static and
dynamical fields, we have introduced a “dynamical factor
Q,” defined as the ratio between the modulus of the
dynamical field value (complex) and the corresponding
static field value (real) at the same point

Q,=|E,(DYN)|/E,(STAT)

RESULTS

(62)

where i stands for any cartesian component x, y, z. Obvi-
ously, Q, must approach the unity as frequency approaches
Zero.

Static values in (62) have been computed form expres-
sions (49)—(55), in the limiting case k,=0. In the limit
k,=0, an infinite series arises in these expressions. Tte
sum of that series has been obtained by applying the
well-known Shanks nonlinear transformation [12]. Dv-
namic values have been found by evaluating the integra's
(29)—(34) with the techniques of Section VI.

The results presented here concern the x-component of
the electric field in the interface, calculated along the
dipole axis, 1.e., for ¢ =0° Data for other directions or
components can be obtained in a similar way.

Fig. 6 shows the dynamical factor Q, for a microstrip
lossless substrate with €¢,=2 and thickness 4 =3 mm.
Three frequencies, namely 1, 5, and 10 GHz, have been
investigated for source-observer distances ranging between
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In Fig. 8, a higher dielectric constant has been consid-
ered with the remaining parameters unchanged. At 1 GHz,
the dynamical factor remains close to unity and even
slightly smaller until a distance 0.1A,,.

Then it increases very quickly. For higher frequencies,
static approximations are barely useful, the dynamical
factor being 1.35 at 5 GHz and 1.75 at 10 GHz.

The effect of permittivity is examined in Fig. 9. The

T
— Qx

100

T T T1THT
o
\

10

&
\

11 Ll 4 |
0,001 0.01 -.r (meters)
Fig. 6. Effect of frequency on the dynamical factor @, as a function of

p for the parameters ¢, =2, tanf =0, h =3 mm. 64: f=1 GHz. 6B:
f=5GHz 6C: f=10 GHz.

1 and 100 mm. The values of Q. depend strongly on
frequency. However, similar values are obtained at differ-

ent frequencies if distances are measured in free-space

wavelengths.

Fig. 7 corresponds to the cases represented in Fig. 6 but
the dynamical factor is now plotted against normalized
distances. For instance, at 0.1\, from the source, the ratio
Q,is1.1at1 GHzand 1.3 at 10 GHz.

100 [
L
’.—
X
4
10 F
C A
-
L c
B
1 ) -‘Aé 1 Lt o111
0.01 0.1

9/9“, — 1

normalized substrate thickness is very small (h/A,=

1000 E
100 5
: /
&
10 £
- o
C
- B
1lE 4—/ A
0.1 { | I T | | | I I
0.01 0.1 8N, —= 1.0

Fig. 8. Effect of frequency on the dynamical factor Q. for a higher
permittivity ¢, =5, tan6=0, h=3 mm. 84: f=1 GHz. 8B: f=3

GHz. 8C: /=10 GHz.

100

IR AL

1
— Qy

10

IR BAR!

——

T TT1T17

1

1

111

P Ll

0.01

0.1

eI

1.0

Fig. 7. Effect of frequency on the dynamical factor Q, as a function of  Fig. 9. Effect of permittivity on the dynamical factor Q, for thin
substrate h /Ay =1/300. tanf =0, f=1 GHz, h=1 mm. 94: ¢, = 2.

the normalized distance for the parameters é, =2, tan@ =0, # =3 mm.
74: f=1 GHz 7B: f=5 GHz. 7C: f=10 GHz.

9B: €; =6.9C: ¢, =8.
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1,/300). The dynamical factor has a very interesting be-
haviour for high permittivity. It remains below unity for a
wide range of distances. For instance, for €, =8, the dy-
namical field is only 35 percent of the static value at
p/Ay=0.1. These phenomena disappear in thicker sub-
strates as evidenced by Fig. 10 where 2 /A ;=1 /20. In this
case, Q, remains always greater than unity.

The dependence of the dynamical factor with substrate
thickness has been depicted in Figs. 11 and 12. For thin

10000
[ //
1000 E
100
_ ///
L B
10E
- A
ll__._.-&—-m———/ S S R A S
0.01 0.1 $/n, —— 10

Fig. 10. Effect of permittivity on the dynamical factor Q. for a thick
substrate h /Ay =1,/20. tan@ =0, f =5 GHz, h =3 mm. 104: é,=2.
10B: €, =5.10C: ¢, =10.

10000

LR

Q«

1000

IR RALL

100

LI Tt

T

0k
- c
B B
1 L 4—% T
0.01 0.1 g/A——
Fig. 11. Effect of substrate thickness on the dynamical factor Q, for the

parameters €, =35, f=5 GHz, tanf =0 114: h=1 mm. 11B: h=3
mm. 11C: A =6 mm.
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!
substrates (Fig. 11), Q. exhibits similar behavior as dis-
cussed in preceding figures. It remains nearly constant or
increases very slowly until a critical distance (between
0.1A, and 0.2A, in the examples considered) is reached.
For greater distances, the dynamical factor increases very
quickly and values between 10% and 10* are obtained at
p=2A,.

The distances considered in the above eases correspond
to a near field zone, where the true field is dominated by

100 -
-
&
10}
— A
- B
c
1 | “ﬁé 1 011t
0.01 0.1 ?/'/\. et 1

Fig. 12. Effect of substrate thickness on the dynamucal factor Q. for
high normalized thickness. ¢, =2, f=1 GHz, tan@=0. 124: h=3
mm 12B: h=30 mm 12C: h =60 mm.

10000 E
-
L&
1000 &
r_
100 E
10
L A ,
1 ! e T T T ] N EE
0.01 0.1 $/n,— 1
Fig. 13. Effect of dielectric losses on the dynamical factor Q. for the

parameters. €] =5, f=5 GHz, h=3 mm. 134: tanf = 0. 13B: tanfd =
0.1. 13C. tan@ = 0.2.
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the quasi-static term. The quasi-static term decreases as
p~ 3, and in the dynamical zone the surface wave takes
over. There the field decays as p~/2. For thicker sub-
strates (Fig. 12) an interesting phenomenon appears. The

dynamical factor is always greater than unity, but it can

exhibit a sudden decrease in the form of a narrow deep

valley. In Fig. 12 with A /A ;=02 and €, =2 (curve C) we
obtain Q, =13 for p=0.7A; while values above Q, =5
are obtained at 0.6\ and 0. 8>\

Figure 13 shows the relevance of dielectric losses. In the
range 0 <tané <0.2, the effect of a lossy substrate is
seldom noticeable except for points in the neighborhood of
the transition zone.

The effect of a finite ground plane conductivity has also
been studied. No significant differences have been found as
far as conductivities remains above 10° S/m or surface
impedances below 0.5 €.

VIIL

In this paper we have compared the quasi-static solution
with the exact solution for the fields of an horizontal
electric dipole located over a lossy dielectric and backed by
an imperfectly conducting ground plane.

Theoretical expressions for the six components of the
electromagnetic field have been derived, and the numerical
techniques needed for their evaluation have been outlined.
As an application, we give practical results for the tangen-
tial component of the electric field parallel to the dipole.

It is found that the region of validity of the quasi-static
solution depends critically on substrate thickness and di-
electric constant, whereas ohmic and dielectric losses have
only a weak influence. In general, the quasi-static ap-
proximation underestimates the strength of the fields.
However, particular combinations of substrate parameters
and frequency can yield anomalous situations where the
true values are well below the quasi-static predictions.

The results presented here can be generalized by super-
position to the study of any microstrip structure. In par-
ticular, coupled lines may be analyzed by an integral
equation approach in which the Green’s functions may be
constructed from the field expressions presented in this
paper. Work in this direction is in progress and will be
reported in coming paper.

CONCLUSIONS
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