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Comparison of Quasi-Static and Exact
Electromagnetic Fields from a

Horizontal Electric Dipole
Above a Lossy Dielectric
Backed by an Imperfect

Ground Plane

JUAN R. MOSIG AND TAPAN K. SARKAR, SENIOR MEMBER, IEEE

AMracf — In most microstirp transmission lines, amdysis is made assum-

ing that a quasi-TEM mode exists and propagates down the line. The

primary objective of this paper is to obtain the region of validity of this

assumption. The second objective of thk paper is to derive the expressions

for the fields for a horizontal electric dipole over a Iossy dielectric medium

backed by an imperfect ground plane. It is shown that, to a first approxima-

tion, fields at the air-dielectric interfaee are independent of the ground

plane conductivity. Since we are interested in coupfing between lines, our

interest is in the computation of the fields primarily at the air-dielectric

interface. Finally, nnmerical results are presented to show where the

quasi-static approximations deviate from the exact solution for a given

microstrip geometry as the frequency of operation or the observation point

is changed.

I. INTRODUCTION

M ICROSTRIP structures are now widely used in

computer systems for propagating electrical energy

from a source to a load. While almost all microstrip

structures have been analyzed by assuming a quasi-TEM

model, it is not known a priori under what conditions the

quasi-TEM model breaks down. Rigorous microstrip for-

mulation for the dynamical case can be established by

using well-known stratified media theory. The pioneering

study on electromagnetic wave propagation in stratified

media must be ascribed to Sommerfeld, who investigated

the radio wave propagation above a lossy ground as early

as 1909. Later several authors [1]–[3] have extended these

theories to arbitrary stratified media, and quite recently

this model has been applied to practical microstrip struc-

tures [4]-[8].

Even though the Sommerfeld theory yields an exact

solution, the analysis is quite complicated, even for the

simple case of a horizontal electric dipole over a stratified
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medium [9]–[10]. That is why a quasi-TEM approximation

is often made of the fields that are produced by the dipole.

It is quite apparent that for a given microstrip configura-

tion, if the frequency is low enough, a quasi-TEM analysis

would yield a good solution. However, as the frequency of

operation increases or as one moves away from the source,

the quasi-TEM analysis would tend to differ from the exact

analysis. The objective of this paper is to describe the

region of validity of the quasi-TIEM analysis for a given

microstrip configuration. It is important to know the fields

at the air–dielectric interface as these fields are primarily

responsible for the cross-talk coupling between different

microstrip lines. Also, at this interface surface waves are

generated. The quasi-TEM analysis neglects the presence

of the surface waves. However, if the frequency is high

enough or the point of observation is away from the

source, it is the surface waves where most of the traveling

energy is confined to rather than in the quasi-TEM fields.

This paper reviews the theoretical foundation of a micro-

strip dynamical model and computes the fields at the

interface. Particular attention is paid to the development of

efficient numerical techniques. In Section II, the mathe-

matical foundation is reviewed. The expressions for the

electric field are presented in Section III. In Section IV, the

effect of a finitely conducting ground plane on the field

components is taken into account, In Section V, the quasi-

static approximations are presented. The computational

and numerical details for the evaluation of the fields are

described in Section VI. Finally, numerical results are

presented in Section VII to outline the regions of validity

of the quasi-static approximation.

II. HORIZONTAL EmcrR1cAL DIPOLE

ON MICROSTRIP

Consider a x-directed horizontal electric dipole (HED)

of moment Mx located in the air–dielectric interface of a

microstrip structure with infinite transverse directions as

shown in Fig. 1. The substrate is a homogeneous isotropic
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Fig. 1. Geometry of the problem.

10SSVdielectric of thickness h and comdex ~ermittivitv

where tand is the loss tangent and ~, is the complex

relative dielectric constant of the medium.

The origin of the coordinate system is chosen to be the

location of the HED. The ground plane is located at

z = – k and is considered to be a perfectly conducting

plane. Later on. this restriction will be removed and the

effect of a finite ground plane conductivity will be taken

into account.

Following Barrington [10], the electromagnetic fields in

such a structure can be derived from a scalar and a vector

potential as

E=–jtiA-v V (2)

H= LVXA. (3)
Po

Several other approaches to determine the fields, such as

decomposition into their TM and TE parts, are also cur-

rently used [3]–[4]. But the use of potentials is preferred

here, because it allows a simple derivation of quasi-static

approximations and leads to the well-behaved rnixed-

potential integral equation.

Both the vector and scalar potentials are solutions of

Helmoltz-type equations whose general solution in cylin-

drical coordinates is, assuming a time dependence of the

form exp ( jat)

where kP and kz are the complex radial and vertical

component of the wave number

L!r-

V

kp= A+jv I

Fig. 2, The complex 8P= A + ju plane with pertinent branch cuts,
C = integration path; P = 10CUSof the first pole AP + J PP as a function
of dielectric losses.

The boundary conditions for tangential fields in micro-

strip structure are

e, X( E1– E2)=0

}

(6)
at interface z = O

ezX(H1– Hz)=~ (7)

e, XEz=O

}
at the ground plane z = – h

(8)

ezXHz=J, (9)

where indexes 1 and 2 refer to air and dielectric substrate,

respectively. Conditions (6)–(8) suffice to obtain the poten-

tials. Equation (9) can be used to determine the currents in

the ground plane.

The surface current associated with an HED is given by

the Dirac’s Delta distribution

=e.ygJc~J2’(kpP)kpdkp3Z=o (10)

where the Hankel transform for 8( p )/p has been utilized

in (10).

It is well known [3]–[7] that two components for the

magnetic vector potential AX and AZ are needed to satisfy

the boundary conditions (6)–(8). For both the potentials,

the boundary conditions transform to

v-l = V2

A1=A2

1

(11)

dAX1 dAY,
onz=O (12)

— = –POJX
az – az

(13)

V2=0
and p, +, and z are the descriptions of the cylindrical AX, =O

1

(14)

coordinates. C is an infinite path going from the third to
ai. ‘

onz=–h. (15)
the first quadrant in the complex plane kP = A + jv as <= o (16)
shown in Fig. 2 [11]. az “
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Introducing the above conditions (11)–(16) and utilizing

the general expression (4), we obtain for the potentials

{ .)
AX,

AX, =

{}

Azl

A=22

and

{1

exp(– UOZ)

~ldx~ll~)(k,p)~ sinhu(z + A) dk,
c H

sinh uh

(17)

— &dx(c, -l)cos+

[1

Jwpdg- ‘Xp(-’’”z)coshu(z + h) dkP (18)
HE

cosh uh

where

{
U. = jkzo = k: – k;

m
u=jkZ= kP

k;= 02WOC0

and the functions DH, D~, and N are given by

DH = U. + ucothuh

DE= <,uo + utanhuh

N= UO+ utanhuh.

(19)

(20)

(21)

(22)

(23)

(24)

(25)

In particular, DH and DE are closely linked to the Fresnel

reflection coefficients R ~ and R ~ of a TE(H) or TM(E)

wave [3], respectively, by the relations

2U0
RH=—– I

DM
(26)

2E,U
R~=—–l.

DE
(27)

Thus, the zeros of DH and DE give the phase constant of

the characteristic TE and TM surface wave modes propa-

gating in such a structure [4]–[7]. For a lossless substrate,

the zeros are situated on the segment {[ko], [&ko]} of the
real axis X = Re [kP ], as shown in Fig. 2. For the lossy

case, the zeros move away from the real axis, thereby

having a small negative imaginary part.

As could be expected, the AZ component vanishes when

c, =1. The sources of the scalar potential V are the charges

associated with the HED via the continuity equation,

namely, two point changes of value q = + l\jti separated
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by an infinitesimal distance dx. The scalar potential Vq of a

unit point change is related to the scalar potential of a

HED”via the relationship

Idx dVq
v=— —

jw”tlx”
(28)

III. EXPRESSIONSFOR THE FIELDS

The electromagnetic field is now derived from the poten-

tials by using (2) and (3). For the sake of completeness,

here are the complete expressions for the six cartesian

components of the fields at the air–dielectric interface

[/
2 H$)(kPp) : dk,4rjacoEX = Idx k.

+ F;cHi’)(kpp)&dkp
HE

J
– COS21#) cH$2)(kPp) ~ dko I (29)

HE

[

4vjticOE, = Idxsin2@ ~/cHY)(kPp) ~ dko
HE

–l\2f HJ2)(kPp)~dk. 1 (30)
c HE

4.rrjticOEz = Idxcos@/CHf2)(kPp)

k; u tanh uh

DE
dkP (31)

47rHX = ldx(t, –l)sin2@

[/

k;
1 H{’) (kP,) ~ ‘kP.—

PC

–1/2~Hf2)(kP,) ~ dk,

1

(32)
c EH

J

kPuo
47rHy = – Idx HJ2)(kPp) -D— dk,

c H

[

+ Idx(cr –1) cos2@jcIf(J2)(kp, )

k: COS2+
.—dkP– —

D~DH P

- jcHf2’(%P)~%
EH 1

47rHz = Idx sin~j H/2) (kPp) $ dko.
c H

(33)

(34)

As expected, the HX component vanishes for the case

c =1. Also. the E. com~onent is discontinuous at z = O.
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since permittivity changes. The above expression corre-

sponds to the value of the field in the air at z = O+.

IV. EFFECT OF A FINITE CONDUCTIVITY

GROUND PLANE

A finite conductivity ground plane can be modelled as

an impedance wall where

E tan =Z$~=Z, (e, XHta~) (35)

with Z, being the surface impedance

z=l+~
s 8 = skin depth,

08 ‘
u = conductivity.

(36)

The exact solution of the microstrip problem with the

condition (35) replacing (8) is quite involved [1], [3]. For

small ohmic losses a perturbation technique similar to the

one used to calculate attenuation factors in waveguides can

be used. Thus the magnetic field in (35) is approximated by

its value in the infinite conductivity case (32)–(34).

The new set of boundary conditions for the potentials

are identical at the interface, but in the ground plane, we

have

V*=O (37)

Ax2=:H,2(u =@) (38)

aA,2 z. aq2
–—(. =m).

az ‘–ju ax
(39)

The potentials are now obtained from (11)-(13) and

(37)-(39).

To illustrate the effect of a finite conductivity in a

situation of practical interest, let us consider the tangential

electric field at the interface.

The relevant potentials are AX and V, since

EX=–jtiAX-~ and E,=-~v.
ay

We obtain

A,= :Lix@2)(kPp)
c

k,

[

~_jRuexp(–uh)
.—

DH kO sinh uh 1dk, (40)

v=
~&cOs@ /H/qkpp)

4~jcdco c

N+ jkO(~r–l)Rexp(–uh)

D~D~ cosh uh
k; dkP (41)

where R is the ratio between the surface impedance and

the free space impedance

(42)

and f is the frequency of operation. By com~arimz with the

expressions for the potentials in the perfect ground plane

case, we observe that the difference is in the one additional

term in the numerator for the potentials. This term is

proportional to the ratio R between surface impedance and

free-space impedance. In addition, for the scalar potential

the term is proportional to the difference (c, – 1).

However, the poles of the integrands in the potential

expressions are still given by the zeros of D~ and DE.

Hence the surface waves are independent of the ground

plane conductivity for this approximation.

V. QUASI-STATIC APPROXIMATIONS

In this section expressions are obtained for the fields for

the quasi-static case when k. e O. Quasi-static approxima-

tions are obtained by noting that the term u can be written

as

u2=u:-(t, -l)k;. (43)

Thus, the obvious simplification is to make u = U. in the

Sommerfeld integrals. With this substitution, analytical

evaluation is possible by series expansion and term by term

integration. Introducing the variable and the parameters

t=exp(–2uoh)

Cr+l
cM=—

2

6,—1
~=—

Er+l

it is seen that

1 l–t

~= 2U0

N 2

DE= (c, +l)(l+qt)

=~(1-qt+q%2+
EM

(44)

(45)

(46)

(47)

) (48)

and hence we obtain for the integrals appearing in the

electric field the expressions

*~@2’(%P):%= ‘Xp(;:k”r”) - ‘Xp(;:kor’)
H

(49)

*Jc@(%P)#%
HE

[

p 1 + jkoro
.— exp(– jkoro)–(l+q)

CM r;

r~l(-q)i-’~exp(-jkort) 1 (50)
. . . ..”
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where

{ri= p2+(z+2ih)2, i = 0,1,2,..,

*~Hf’(kpP)~e.P( -.oz)dkp
HE

‘M-+?+%)exp(-’koro)
--(l+ TJ)~(- q)’-’

izl

“F?+3)exp(-JkorJl
and

*@%#)uOk;~huOh dk,
E

P

[

ZQO
. —exp(–jkoro)–(l+q)

c,+l r;

‘l~l(-~)’-’ (z+f~)Qiexp(- jkori)
1 I

with

P,= 1 + jkori

Q,= 3+3jkor, – k($r~.

(51)

(52)

(53)

(54)

(55)

Similar expansions can be obtained for the integrals related

to the magnetic field (32)–(34). Of course when k,= O

(zero frequency) either the exact expressions or the quasi-

static approximations become the static case in which the

fields are created by an electrostatic dipole of moment

qdx = Idx/ja. This moment becomes infinite at zero

frequency. Hence, in order to avoid computing infinite

fields in the static limiting case, we shall consider that the

current in the HED is proportional to the frequency, or in

other words the electrostatic moment qdx remains finite at

zero frequency. This assumption corresponds closely to the

practical case of a dipole showing a capacitive input im-

pedance and excited by a voltage generator.

VI. COMPUTATIONAL DETAILS

For the evalution of the fields, it is necessary to evaluate

certain infinite integrals of oscillatory functions and diver-

gent integrals as A ~ m. In addition, there exists poles near

the path of integration which makes numerical integration

along the real axis more complicated. For the sake of

simplicity, we shall consider that the working frequency

satisfies the condition f < co /4h& — 1. Thus, only one

pole, corresponding to the first zero of DE, must be consid-

ered [11].

Numerical techniques developed for the lossless case [7]

do not work accurately for all parameters of interest,

particularly when there is a lossy dielectric substrate. Many

new techniques have been devised and checked extensively.

This section gives an outline of the numerical techniques

which in our opinion are best adapted to this problem.

Even though many paths have been tried to evaluate

these integrals, we felt the integration along the real axis is

the most efficient. Fig. 3(a) shows a typical example of the

class of function to be integrated. An enlarged view in the

interval [0.9ko, 1.4ko] is depicted in Fig. 3(b). The main

difficulties regarding the numerical integration, are then

infinite derivatives at A = k, and the strong variations near

the complex pole, especially tlie sharp peak in the imagin-

ary part. Moreover, the function oscillates and diverges at

infinity.

The integration interval is decomposed into three subin-

tervals [0, k,], [k,, ko~] and [ko~m]. In the region

[0, k,] the infinite derivative in k, is eliminated with a

change of variables A = k, cost. The resulting smoother

function is integrated numerically. In the internal [ko,

&kO], the singularity is first extracted (if the integrand

includes the denominator DE). By writing the function

under the integral sign in the form F(A)= .l.(AP)~(P),

then we have

0.6

I

[III] t-

0.0 I ,
I

2Y 3.OV 4,0

.13, fj L [RE1 I

0.2

0!0

-0,6

[ lf.11

IL9 1.0

[REI

1-

(b)

Fig. 3. (a) The complex integrand for the scalar potential. (;= 5, tan 6’
= 0.01, kop = 5.4, kolr = 0.27r. [REI -+ real part of the integrand. [lMI
+ imaginary part of the integrand. (b) Enlarged view of the integrand
for Fig. 3(a) in [0.9kP, 1.4kP]. [RE] + red part of the integrand.
[IM] + imaginay part of the integrand.
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where

R’
%g(~)=A_(Ap+jvp) ‘“ (57)

Here AP + jvp is the complex pole and R’ the residue of F

at the pole

R’=.T. [( XP+jvP)p]”~ ~l~m+,, (k,–~,–j~,)f(kp).
OP P

(58)

The function F,i~g is integrated analytically as

I
J

R’ V2+(kOfi-~P)2
‘o&F d~ = _~n P.

smg smg
k. 2 #+(kO+AP)2

+ iR,arctan ‘“K-A’.
‘P

Ap – k,
+ jR’arctan — (59)

‘P

and VP approaches zero from the negative side. It is worth

mentioning that when VP~ O with hp > k.

ko~ – Ap
,,ng = R’ inI

Ap – k. – ‘TR’

J

ko~ d?t
=R’ —

k. A – Ap – ‘TR’

(60)

and hence the lossless case is a special case of this general

procedure.

Fig. 4 depicts the real part of the original function F(A)

(curve xl) and of the difference F(A) – F,,.g(A) (curve B,

where the singularity has been extracted). There is still an

infinite derivative in the curve B at X = k.. With a change

of variable A = k. cosh t one finally obtains a very smooth

integrand (discontinuous line in Fig. 4), which is integrated

by a Gaussian quadrature. The same procedure is applied

to the imaginary part of F(A) to eliminate in a similar way

the sharp peak and the infinite derivative.

1.0 1
1.5 2,0 G

0,0 \
\ I I

\ \ /’- $“

-0,6

Fig. 4. The integrand of Fig. 3 (real part only) in the interval

[kP, kpfi].

0.2 r

0,0

.
-0,2 I_

Fig. 5. The integrand of Fig. 3 (real part only) in the interval

[kpfi,lokp].

Finally, in the region [fiko, m] we first extract the

static term defined by F( A, k. = O). Fig. 5 depicts the

integrand F(A, ko) (curve A) and the ~ifference F(A, kO)

– F(A, O) (curve B). It can be shown that the static term

has the form

F(A, ko=O)=C~l(Ap)N (61)

and hence it can be integrated analytically.

The remaining part is a slowly convergent oscillating

function which is handled with a specially tailored numeri-

cal technique [7]. Extensive tests have been performed to

check the validity of the numerical results in the range

0.001< kop <100, 0.01< koh <1.5, 1 <e, <10 and for dif-

ferent ground plane conductivities and dielectric losses.

Typical results are presented in the next section.

VII. RESULTS

To allow a quantitative comparison between static and

dynamical fields, we have introduced a “dynamical factor

Q,” defined as the ratio between the modulus of the

dynamical field value (complex) and the corresponding

static field value (real) at the same point

Q,= IJZ(DYN)I/E, (STAT) (6;!)

where i stands for any cartesian component x, y, z. Obvi-

ously, Q, must approach the unity as frequency approaches

zero.

Static values in (62) have been computed form expres-

sions (49)–(55), in the limiting case k. = O. In the limit

k.= O, an infinite series arises in these expressions. Tk e

sum of that series has been obtained by applying the

well-known Shanks nonlinear transformation [12]. Dy-

namic values have been found by evaluating the integra”s

(29)-(34) with the techniques of Section VI.

The results presented here concern the x-component of

the electric field in the interface, calculated along the

dipole axis, i.e., for @= 0°. Data for other directions cm

components can be obtained in a similar way.

Fig. 6 shows the dynamical factor QX for a microstrip

lossless substrate with c,= 2 and thickness h = 3 mm.

Three frequencies, namely 1, 5, and 10 GHz, have been

investigated for source-observer distances ranging between
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10000

1000

lUO

10

1
0,001 0.O1 -Dp (meters) ‘o]

Fig. 6. Effect of frequency on the dynamical factor QX as a function of

p for the parameters c;= 2, tanO = O, h = 3 mm. 6A: ~ = 1 GHz. 6B:

~= 5 GHz. 6C: ~=10 GHz.

1 and 100 mm. The values of QX depend strongly on

frequency. However, similar values are obtained at differ-

ent frequencies if distances are measured in free-space

wavelengths.

Fig. 7 corresponds to the cases represented in Fig. 6 but

the dynamical factor is now plotted against normalized

distances. For instance, at O.lAO from the source, the ratio

QX is 1.1 at 1 GHz” and 1.3 at 10 GHz.

100

?

10

1-

A

1
0,01 0.l 9/>, —

Fig. 7. Effect of frequencyon the dynamicd factor QX asa function of
the normalized distancefor the parameters{,= 2, tan@= O, h = 3 mm.
7A: j=l GHz. 7B: f=5GHz.7C: ~=lOGHz.

In Fig. 8, a higher dielectric constant has been consid-

ered with the remaining parameters unchanged. At 1 GHz,

the dynamical factor remains close to unity and even

slightly smaller until a distance O.lA ~.

Then it increases very quickly. For higher frequencies,

static approximations are barely useful, the dynamical

factor being 1.35 at 5 GHz and 1.75 at 10 GHz.

The effect of permittivity is examined in Fig. 9. The

normalized substrate thickness is very small (h /AO =

1000

100

10

1

o,,L._u.J
0.01 0,1 ?[>O ~ 1,0

Fig. 8, Effect of frequency on the dynamicaf factor Q< for a higher

permittivity c.= 5, tanfl = O, h = 3 mm. 8A: ~ =1 GHz. 8B: ~ = 5
GHz. 8C’: j =10 Gliz.

100

1-ox

t

I

I I I I I I I

Fig. 9. Effect of permittivity on the dynamical factor QX for thm

substrate h/XO =1/300. tan~ = O, ~ =1 GHz, h =1 mm. 9A: c: = 2.
9B: ei =6. 9C’: cl= 8. .
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1/300). The dynamical factor has a very interesting be-

haviour for high permittivity. It remains below unity for a

wide range of distances. For instance, for f,= 8, the dy-

namical field is only 35 percent of the static value at

p/A ~ = 0.1. These phenomena disappear in thicker sub-

strates as evidenced by Fig. 10 where h/A ~ =1/20. In this

case, Q.. remains always greater than unity.

The dependence of the dynamical factor with substrate

thickness has been depicted in Figs. 11 and 12. For thin

10000

1000

100

10

1

k

1

0,01 0!1 9/% — 1.0

Fig. 10. Effect of permittivity on the dynamicaf factor Q. for a thick

substrate h/ A,, = 1/20. tan8 = O, f = 5 GHz, h = 3 mm. 10A: {, = 2.

1o11: c,= 5: 10’C: 6; =10.

10000

1000

100

10

E
t

substrates (Fig. 11), Q,, exhibits similar behavior as dis-

cussed in preceding figures. It remains nearly constant or

increases very slowly until a critical distance (between

O.lA ~ and 0.2A ~ in the examples considered) is reached.

For greater distances, the dynamical factor increases very

quickly and values between 103 and 104 are obtained at

p=Ao.

The distances considered in the above eases correspond

to a near field zone, where the true field is dominated by

100

10

1

A

I I [ I I ! I (

0.O1 0,1 ?/1. — 1

Fig. 12. Effect of substrate thickness on the dynamical factor Q, for
high normalized thickness. c,= 2, f = 1 GHz, tand = 0. 12,4: h = 3

mm 12B: h=30 mm 12C: ~= 60-mm.

-f
1000 ~

’00F——————
E
t

t

L
0,01 0,1 1

Fig. 11. Effect of substrate thickness on the dynamical factor Q, for the Fig. 13. Effect of dielectric losses on the dynamical factor QX for the

parameters c;= 5. j= 5 GHz, tan~ = O 11A: h =1 mm. llB: h = 3 parameters. c; = 5, .f=5 GHz, h=3 mm. 13A: tand=o. 13B: tan9=
mm. llC: h = 6 mm. 0.1. 13C. tanO = 0.2.



MOSIG AND SARKAR: QUASI-STATIC AND EXACT EM FIELDS

the quasi-static term. The quasi-static term decreases as

P-3, and in the dynamical zone the surface wave takes
over. There the field decays as p-112. For thicker sub-

strates (Fig. 12) an interesting phenomenon appears. The

dynamical factor is always greater than unity, but it can

exhibit a sudden decrease in the form of a narrow deep

valley. In Fig. 12 with h /AO = 0.2 and c, = 2 (curve C) we

obtain QX = 1.3 for p = 0.7X0 while values above QX = 5

are obtained at 0.6A0 and 0.8A0.

Figure 13 shows the relevance of dielectric losses. In the

range O -= tan 0<0.2, the effect of a lossy substrate is

seldom noticeable except for points in the neighborhood of

the transition zone.

The effect of a finite ground plane conductivity has also

been studied. No significant differences have been found as

far as conductivities remains above 106 S/m or surface

impedances below 0.5 fil.

VIII. CONCLUSIONS

In this paper we have compared the quasi-static solution

with the exact solution for the fields of an horizontal

electric dipole located over a lossy dielectric and backed by

an imperfectly conducting ground plane.

Theoretical expressions for the six components of the

electromagnetic field have been derived, and the numerical

techniques needed for their evaluation have been outlined.

As an application, we give practical results for the tangen-

tial component of the electric field parallel to the dipole.

It is found that the region of validity of the quasi-static

solution depends critically on substrate thickness and di-

electric constant, whereas ohmic and dielectric losses have

only a weak influence. In general, the quasi-static ap-

proximation underestimates the strength of the fields.

However, particular combinations of substrate parameters

and frequency can yield anomalous situations where the

true values are well below the quasi-static predictions.

The results presented here can be generalized by super-

position to the study of any microstrip structure. In par-

ticular, coupled lines may be analyzed by an integral

equation approach in which the Green’s functions may be

constructed from the field expressions presented in this

paper. Work in this direction is in progress and will be

reported in coming paper.
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